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A B S T R A C T   

This paper discusses the use of stochastic modeling in the prognosis of Corona Virus-Infected Disease 2019 
(COVID-19) cases. COVID-19 is a new disease that is highly infectious and dangerous. It has deeply shaken the 
world, claiming the lives of over a million people and bringing the world to a lockdown. So, the early detection of 
COVID is essential for the patients’ timely treatment and preventive measures. A filtering technique with time- 
varying parameters is presented to predict the stochastic volatility (SV) of COVID-19 cases. The time-varying 
parameters are estimated using the Kalman filtering technique based on the stochastic component of data 
volatility. Kalman filtering is essential as it removes insignificant information from the data. We forecast one- 
step-ahead predicted volatility with ±3 standard prediction errors, which is implemented by Maximum Likeli-
hood Estimation. We conclude that Kalman filtering in conjunction with the SV model is a reliable predictive 
model for COVID-19 since it is less constrained by the past autoregressive information.   

Introduction 

Forecasting of time series with the estimation of time-varying pa-
rameters is useful for many statistical, probabilistic, and optimization 
processes that allow models to consider past observations and detect the 
disease pattern. Researchers and developers are increasingly using sto-
chastic models to track and prevent chronological diseases and gain a 
more comprehensive understanding of the disease. Recently, many re-
searchers, journalists, and amateur data enthusiasts are working on 
stochastic models to help people monitor the Coronavirus’s spread and 
effects over time. 

Corona Virus is a respiratory illness caused by a novel virus that 
affects humans, mammals, and birds. This viral disease has become a 
major global disaster. Novel Coronavirus outbreaks were initially 
detected in Wuhan, China (in 2019), and have now spread to numerous 
countries worldwide. Nearly 40 million cases have been identified in 
188 countries by October 15, 2020, with over one million fatalities and 
27 million recovering [1]. 

Experts have confirmed that the virus can spread rapidly from one 
human body to another and infect the lungs of humans through the 
respiratory system. Close to each other (less than six feet), the virus 
spreads through droplets generated from coughing, sneezing, and 

talking. Most of the droplets fall to the ground or onto surfaces rather 
than traveling long distances in the air. Individuals who have been 
infected with this viral infection will have varying symptoms, from 
coughing, fever, infections in the throat, kidney failure, respiratory 
problems, etc. The less common way in which people become infected is 
by touching something contaminated then touching their faces. It is 
most contagious during the first three days after the onset of symptoms, 
even though people who do not show symptoms are also at risk of 
picking it up before symptoms appear aka being asymptomatic [2,3]. 

COVID-19 has been affecting the US for months, and researchers are 
working hard to determine the virus’s characteristics (why some people 
are more affected than others, what we can do to slow its spread, and 
where it is likely to move to next). The data indicate a spike within a 
short time, therefore it might be useful to analyze the disease case rate to 
know how the disease is spreading, what impact the pandemic has on 
people, and whether the preventative measures are effective [4,5]. The 
dynamics of the COVID-19 cases are now believed to involve volatility 
clustering and show typical non-linear characteristics [22]. 

This study develops a stochastic model to predict the volatility of 
COVID-19 rates per day. The volatility models are used to predict the 
financial data since they contain extreme fluctuations. The SV model 
with Kalman filtering is used in this analysis because COVID-19 data 
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shows high spikes within a short time period. A challenge of the SV 
models for COVID-19 data is the estimation of time-varying parameters, 
because it is not possible to observe the volatility directly from the data. 
Our approach consists of observing only a time series of daily rates, 
followed by a filtering procedure. At this point, the rates are not a 
Markov process, the likelihood of a current observation of rates is a 
function of the entire history of the COVID cases, not just the last 
observation. However, the rates of infected cases follow long memory 
nature over time. It suggests that there is a persistent behavior from the 
past to present information. We assumed a log-volatility (conditional) 
followed by an auto-regressive stationary process in the COVID-19 data. 
The long memory and stationarity are verified by testing the parameters 
and the unit root test presented later. As the likelihood estimation of the 
SV model is tiresome for fitting the data, the Kalman filtering has been 
used to estimate the time-varying parameters via Maximum Likelihood 
Estimation [9]. 

The overview of this paper is as follows: Section 2 describes the 
research methodology of Kalman filtering [16] and volatility models. 
Section 3 deals with the dynamic behavior of the datasets. We discuss 
the background and some useful information about COVID-19. In Sec-
tion 4, the long memory and stationarity tests are analyzed. Section 5 
provides the results and discussion of our model’s suitability regarding 
the estimation of model parameters for COVID-19 data. Finally, Section 
6 contains the conclusion of this study. 

Research methodology 

This section describes the Kalman Filtering technique and volatility 
modeling to estimate the stochastic volatility (SV) of COVID cases daily 
rates. 

Kalman filtering 

We begin with a state-space model [14] as 

zt = Cθt + ∊t (1)  

where zt is observed data (space), θt is unobserved data (state vector) 
with a coefficient matrix C, and ∊t is a Gaussian error term. As θt is 
unobserved, we use the following autoregressive equation: 

θt = Bθt− 1 + υt, (2)  

where B is a n × n transition matrix and υt is a Gaussian error term with 
mean 0 and variance συ. The unobserved data θt can be obtained from 
Eqs. (1) and (2) using given data zs = {z1,…,zs}. In this study, time s is 
used as time t in a recursive process and the process for t is called as 
filtering technique. The filtering technique helps to find accurate esti-
mation from noisy information. The error terms ηt can be defined as ηt =

θ̂t − θt using the unobserved data. Besides the error terms, the co-
variances of the two noise terms are assumed as stationary over time as 
E[υtυT

t ] = συ and E[∊t∊T
t ] = σ∊. The best filter can be found by minimizing 

the mean squared error, E(η2
t ), which is equivalent to Wt (the error 

covariance matrix at time t): 

Wt = E[ηtηT
t ] = E[(θt − θ̂t )(θt − θ̂t )

T
] (3)  

Now the state vector can be updated with an innovation process. The θ̂t
′

is assumed as the prior estimate of θ̂t , which is computed by the state 
update equation as 

θ̂t = θ̂t

′

+Kt(zt − Cθ̂t

′

) (4)  

where θ̂t
′

is the prior estimate of θ̂t ,Kt is the Kalman gain and (zt − Cθ̂t
′

)

is the innovation or measurement residual. At this point, the error co- 
variance matrix at time t can be obtained as 

Wt = W ′

t − KtCW ′

t − W ′

tC
T KT

t +Kt(CW ′

tC
T + σ∊)KT

t (5)  

It is clear that the error of the prior estimate is not correlated with the 
innovation. To minimize the tr([Wt ]), we differentiate it with respect to 
Kt and set it to zero as 

dtr[Wt]

dKt
= − 2(CW

′

t)
T
+ 2Kt(CW

′

tC
T + σ∊) = 0 (6)  

In order to compute Kalman gain Kt , we minimize the trace of Wt by 
taking derivative as equal 0, which gives: 

Kt = W
′

tC
T(CW

′

tC
T + σ∊)

− 1
(7)  

Eq. (7) is called as Kalman gain equation in the filtering technique. Now 
Eq. (5) can be updated with the optimal gain as 

Wt = W ′

t − KtCW
′

t = (I − KtC)W ′

t (8)  

The prior estimate of Wt can be expressed as 

W ′

t+1 = ϕWtϕT + συ (9)  

where ϕ is the stationary transition matrix and the above Eq. (9) gives 
the minimum MSE. For the details of filtering, the readers are referred to 
[12]. 

Volatility modeling 

This subsection presents the volatility modeling of daily rates of 
COVID-19 data. A stochastic component has been used to compute the 
volatility by following an innovation sequence. The innovation is fully 
independent of observations used in this study [13]. The data volatility 
is estimated through an unobservable process that changes stochasti-
cally. We express the rates rt as a product of two components of the 
process as 

rt = σtβt, (10)  

where σt is the volatility and βt is a noise term. At this point, we assume 
that the noise term follows a sequence of Gaussian white noise [15], and 
there is no dependency between the sequence and data volatility. 

To estimate the stochastic volatility, the log-squared rates of the data 
are used as follows: 

ψt = vt + αt, (11)  

where ψ t = logr2
t ,vt = logσ2

t , and αt = logβ2
t . Now it is clear that the log- 

squared rates have two parts namely, the unobserved volatility vt and 
the unobserved noise αt. The unobserved volatility varies with time 
through an auto-regression equation [11]: 

vt = a0 + a1vt− 1 + γt, (12)  

where γt is a white Gaussian noise term with the variance σ2
γ . So the Eqs. 

(11) and (12) consist of the time-varying parameters and are called the 
stochastic volatility model. In this model, the noise term is computed by 
two types of Normal distribution. One of the Normal distributions is 
assumed with zero mean and the other one is non-zero mean. So the 
observed data zt can be expressed as follows: 

zt = λ+ vt + δt, (13)  

The noise part δt can be written as a linear combination of Bernoulli 
random variable [20], with probability π and Normal random variables 
xt0 and xt1, where xt0 is Normally distributed with mean 0 and variance 
u2

0, xt1 is Normally distributed with mean μ1 and variance u2
1 with δt =

Btxt0 − (Bt − 1)xt1. In our study, we assume that xt0, xt1,Bt all are inde-
pendently and identically distributed and the probabilities of Bt are 
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defined as Pr{Bt = 0} = π0 and Pr{Bt = 1} = π1, where π0 + π1 = 1. In 
the SV model, a0,a1,σγ ,μ1,u0, and u1 are time-varying parameters, so our 
approach is to estimate them using the Kalman filtering technique 
described in Section “Kalman filtering”. 

Dynamic behavior of the datasets 

In this section, we present the background of the COVID-19 datasets 
used in the paper. It is the dynamic behavior of the data that encourages 
us to apply our methodology in this paper. 

Data background 

We collected the daily number of laboratory and hospital confirmed 
COVID-19 cases and deaths released by the World Health Organization 
(WHO) from January 10, 2020 to May 15, 2020 to construct a real-time 
database [6]. Most affected countries like the United States, China, Italy, 
and Spain were included in this study and a comparison of daily cases 
was illustrated (See Fig. 1). Afterward, daily new deaths and new cases 
for a 10-day interval time interval in all four countries were plotted for 
the first 90 days (See Figs. 2–5). Healthcare Access and Quality (HAQ) 
Index for the topmost affected countries with confirmed COVID-19 cases 

Fig. 2. Daily new deaths and new cases for 10-day interval time interval in USA for first 90 days.  

Fig. 1. Comparison of countries for daily cases.  

Fig. 3. Daily new deaths and new cases for 10-day time interval in China.  
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reported by the WHO is derived from a previously published study by 
the GBD (Global Burden of Disease) 2016 Healthcare Access and Quality 
Collaborators [7]. 

Descriptive statistics 

This data set includes data from four different countries: the United 
States, China, Italy, and Spain. We assemble daily new cases and new 
deaths for the first 90 days for each country and calculate the change in 
percentage [8]. Next, we applied some statistical analysis to the datasets 
for additional information. Table 1 provides information about the 
percentage change of daily new cases for each country. Spain has a lower 
mean value than other countries. The standard deviation for the 
maximum cases is higher in China, as presented in Table 1. The skewness 
and kurtosis give summary information about the shape of a distribu-
tion. As it shows that the Kurtosis is positive for all the countries and 
maximum for the USA, it indicates flatter tails and narrow peaks aka 
normal distribution. 

Stationary and long memory approaches 

This section analyzes the time series by testing for stationarity and 
long memory in the COVID-19 cases data. A stationary series and long 
memory series are relatively easy to predict. The assumption is that the 
data’s statistical properties will be the same in the future as they were in 
the past. We now briefly discuss the long memory and stationary test 
when they are applied to the datasets. 

Stationary test 

To test COVID-19 data’s stationarity, we used the Augmented Dicky 
Fuller test (ADF test) [21]. It is a hypothesis used to determine the 
presence of a unit root in a series which facilitates the analysis of higher- 
order autoregressive processes. The null hypothesis is assumed as the 
data has a unit root against the alternative with no unit root. The p-value 
below the critical level leads to a unit root in the dataset [17]. This test’s 
summary statistics for the datasets are presented in Table 2. 

We see that all the p-values of four datasets are higher than a sig-
nificance level (0.01) at lag 4, which suggests that the alternative hy-
pothesis is acceptable with no unit root, meaning that the datasets of 

Fig. 4. Daily new deaths and new cases for 10-day time interval in Itlay.  

Fig. 5. Daily new deaths and new cases for 10-day time interval in Spain.  

Table 1 
Descriptive statistics of COVID-19 dataset.  

Statistics USA China Italy Spain 

Mean 0.2291 0.2844 0.1051 0.0353 
Std. dev 0.7511 1.3633 0.5108 0.8016 
Minimum − 0.5822 − 1 − 0.4563 -4.1108 
Maximum 5.6671 7 3.4285 3.5975 
Skewness 5.8577 3.8789 3.9437 − 0.8655 
Kurtosis 41.8821 16.3303 20.7222 12.7746  

Table 2 
Unit root testing (ADF) for COVID cases.  

Country Test statistics Lag p-value 

USA − 2.96 4 0.1779 
Spain − 3.03 4 0.1491 
Italy − 3.51 4 0.0441 
China − 3.10 4 0.1187  
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COVID-19 are stationary at lag 4. 

Long memory test 

As the data follow stationary behavior at a specific lag, it prompts us 
to analyze the long memory effects of data. We know that the fractional 
difference parameter identifies a long memory pattern of data in an 
Autoregressive Fractional Integrated Moving Average (ARFIMA) model 
[18]. The process is considered the long memory pattern when the 
fractional difference parameter (known as long memory parameter) lies 
in the interval (0, 0.5). Since the parametric model ARFIMA was fitted to 
the Gaussian stationary data rt, a traditional Maximum Likelihood (ML) 
can be used to estimate the model parameter. However, we observe that 
the traditional ML estimator (MLE) requires a large number of opera-
tions to optimize its likelihood function for a Gaussian random field, 
thus it is not computationally efficient. At this point, we used a relatively 
efficient algorithm namely, the whittle likelihood that provides a spec-
tral approximation to the log-likelihood [19]. Using the stationary 
property, the whittle approximation can reduce the MLE’s number of 
operations from O (n3) to O (nlogn). Table 3 shows the parameter esti-
mation with standard error for COVID data from four countries. We see 
that the estimated parameter is less than 0.5 for each country’s dataset. 
Furthermore, the estimated errors are very low, meaning that the esti-
mates are stable around the actual value. So the datasets used in the 
study follow long memory patterns, i.e., persistence behavior. 

Results & discussion 

This section presents the analysis of estimating the time-varying 
parameters of SV model using the Kalman filtering technique. To fit 
the Kalman filtering, we first initialize the parameters a0, a1, σγ , μ1, u0, 
and u1 for estimation. The initialization was considered in a way to 
obtain the log-volatility over time. The parameter σ2

γ represents the 

variance of the log-volatility process and measures the randomness of 
future data volatility. To estimate the parameters at time t, the MLE 
algorithm was used with the innovation processes in Eqs. (12) and (13). 
In this case, we used the normally distributed auto-regressive condi-
tional heteroscedasticity assumption on the white noise term, βt [10]. 

The parameter estimates (a0, a1, σγ , μ1, u0, and u1) and the sample 
paths of data volatility after filtering are presented in Tables 4–7 and 
Figs. 6–9. It is clear that the estimates are close to the true parameters, as 
the errors are pretty low. The σ2

γ is the variance parameter of the log- 
volatility process, which measures the uncertainty of future data vola-
tility. If the value of σ2

γ is zero, it is not possible to identify the SV model. 
The parameter a1 is considered as a measure of the persistence of shocks 
to the volatility. Tables 4–7 show that a1 is less than 1 for four countries’ 
data volatility. So we conclude that the latent volatility process is sta-
tionary, leading to the stationarity of zt of the COVID cases, which 
confirms the results of Section “Stationary and long memory 
approaches”. 

The parameters a1 and σγrepresent the dynamics of the volatility 
evolution of COVID cases. The tables also show that the parameter a1 is 
pretty close to 1, and the parameter σγ is different from 0 for all four 
countries. It suggests that the volatility evolution is uneven over time. It 
is concluded that the COVID rates of cases might be heteroscedastic by 
nature, meaning that there might be non-constant conditional volatility 
over time. So, the summary statistics of these tables are advantageous to 
control the risk or mitigate COVID cases’ effect. 

Conclusion 

This paper discusses the daily rates of COVID-19 cases from four 
different countries, namely the United States, Spain, Italy, and China. 
The data shows a stochastic nature over time, so we estimated the sto-
chastic volatility of daily rates. The daily rates of COVID-19 cases show 
the persistence behavior, meaning the movements of time series is 
correlated with their past observations and reflect stationarity at some 
past time lags. The persistence behavior was analyzed with the ARFIMA 
model parameter using Whittle likelihood (see Long memory test sub-
section). It is an effective method for reducing the number of MLE op-
erations using the stationary property of COVID-19 data, and provides a 
good spectral approximation to the log-likelihood. In addition to this, 
the stochastic feature of stationary data helps to model the high fluc-
tuations or high rate of COVID cases with much certainty. 

In this study, we used the Kalman filtering technique in conjunction 

Table 4 
Estimates of SV parameter for the COVID cases in USA.  

Model parameters Estimate Standard Error 

a0  0.0017 0.048 
a1  0.991 0.032 
σγ  0.399 0.037 
u0  − 0.0064 0.082 
μ1  − 6.848 1.7400 
u1  6.432 1.1641  

Table 5 
Estimates of SV parameter for the COVID cases in Spain.  

Model parameters Estimate Standard Error 

a0  0.223 0.198 
a1  0.986 0.020 
σγ  0.742 0.114 
u0  − 0.0026 0.140 
μ1  2.573 1.234 
u1  4.520 0.880  

Table 6 
Estimates of SV parameter for the COVID cases in Italy.  

Model parameter Estimate Standard Error 

a0  0.238 0.165 
a1  0.988 0.018 
σγ  0.553 0.069 
u0  0.0036 0.0878 
μ1  3.637 1.302 
u1  5.112 1.007  

Table 7 
Estimates of SV parameter for the COVID cases in China.  

Model parameter Estimate Standard Error 

a0  − 0.271 0.199 
a1  0.951 0.036 
σγ  − 0.403 0.074 
u0  0.0001 0.954 
μ1  1.656 1.284 
u1  4.920 0.1171  

Table 3 
Estimates of long-memory parameter for COVID cases data.  

Source Estimates (long memory parameter) Std. Error 

USA 0.388 0.081 
Spain 0.457 0.083 
Italy 0.457 0.083 
China 0.266 0.069  
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Fig. 6. Sample path of one-step-ahead log-volatility, with ±3 standard prediction errors for USA COVID cases.  

Fig. 8. Sample path of one-step-ahead log-volatility, with ±3 standard prediction errors for Spain COVID cases.  

Fig. 7. Sample path of one-step-ahead log-volatility, with ±3 standard prediction errors for China COVID cases.  

Fig. 9. Sample path of one-step-ahead log-volatility, with ±3 standard prediction errors for Italy COVID cases.  
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with the SV model for forecasting the data volatility. The process filters 
out the unnecessary information from data and provides the estimation 
of time-varying parameters that support non-constant conditional 
volatility. The results suggest that this stationary process forecast the 
volatility effectively with Kalman filtering. The one-step-ahead log- 
volatility with ±3 standard prediction errors were shown over time (see 
Figs. 6–9), and the low errors of parameter estimation (see Tables 4–7) 
imply that the estimation is around the actual value. So the analysis is 
useful to detect the high rate of COVID-19 cases of a particular time. As 
we applied the test case for four leading countries of COVID cases, it can 
be applied to any country with a high new cases rate and new deaths 
rate. Although the vaccine for COVID-19 is now available, the number of 
cases is increasing. Therefore, detecting the high rate would allow us to 
raise awareness of self-protection and to take all the possible protective 
steps such as practicing social distancing, improving personal hygiene, 
covering the face with a mask, and other prescribed methods by experts. 
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