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Abstract: Objective: To evaluate the efficacy of reported anti-malarial phytochemicals as lead com-
pounds for possible drug development against COVID-19.  

Methods: An in silico approach was used in this study to determine through molecular docking the 
binding affinities and site of binding of these phytochemicals to the 3C-like protease of COVID-19 
which is considered as the main protease of the virus.  

Results: A number of anti-malarial phytochemicals like apigenin-7-O-glucoside, decurvisine, luteolin-
7-O-glucoside, sargabolide J, and shizukaols A, B, F, and G showed predicted high binding energies 
with ΔG values of -8.0 kcal/mol or higher. Shizukaols F and B demonstrated the best binding energies 
of -9.5 and -9.8, respectively. The acridone alkaloid 5-hydroxynoracronycine also gave a predicted 
high binding energy of -7.9 kcal/mol.  

Conclusion: This is for the first time that decursivine and several shizukaols were reported as potential 
anti-viral agents. These compounds merit further studies to determine whether they can be effective 
drug candidates against COVID-19.	  
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1. INTRODUCTION 

 The current viral pandemic that is sweeping the world is 
caused by a Coronaviridae family virus termed COVID-19 
or SARS-CoV-2. Two previous coronaviruses, Severe 
Acute Respiratory Syndrome (SARS) and Middle East Res-
piratory Syndrome (MERS), caused a stir among the 
world’s population due to their contagiousness and lack of 
therapeutics to control these viruses. All three viruses are 
zoonotic. SARS originated in southern China in November 
2002, and through nosocomial transmission, it rapidly 
spread to more than 30 countries across five continents, 
spreading infections among more than 8,000 people [1]. The 
clinical symptoms of SARS included fever, chills, myalgia,  
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coughs, breathlessness, runny nose, sore throat, headache, 
and diarrhea. MERS infected 2,206 people but had a higher 
mortality rate. The clinical characteristics of MERS in-
cluded fever, chills, generalized myalgia, drowsiness, 
cough, dyspnea, breathlessness, abdominal pain, nausea, 
vomiting, and diarrhea [2]. The latest in these coronavirus 
diseases (COVID-19 caused by SARS-CoV-2) was first 
reported from Wuhan, China, in late December of 2019. The 
common clinical characteristics of this latest coronavirus 
disease include fever, cough, dyspnea, diarrhea, and fatigue 
[3,4]. Consistent with the clinical characteristics, SARS-
CoV-2 shares 79% sequence identity with the Severe Acute 
Respiratory Syndrome coronavirus and 50% identity with 
the Middle Eastern Respiratory Syndrome coronavirus [5]. 
 The viral genome of SARS-CoV-2 reportedly encodes 
more than 20 proteins, among which are two proteases, the 
papain-like protease PLpro and chymotrypsin-like protease 
CLpro. These two proteases cleave two polyproteins of the 
virus; PP1A and PP1AB into 16 non-structural proteins 
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(NSPs), which are essential for viral replication. The CLpro, 
otherwise also known as the main protease Mpro or 3C-like 
protease, is considered a promising drug target to block repli-
cation of the virus [6]. The 3C-like proteases of SARS and 
SARS-CoV-2 are highly similar, with only 12 variants in the 
amino acid residues (residue numbers in SARS-CoV-2 being 
35, 46, 65, 86, 88, 94, 130, 180, 202, 267, 285, and 286) [6]. 
The catalytic residue numbers are the same, 41 and 145 [7]. 
The substrate-binding residue numbers are also the same, 
being 41, 49, 143, 144, 163-167, and 187-192 [8,9]. The 
SARS-CoV-2 3C-like protease is a dimer; the monomer re-
portedly contains three domains. Domain 1 contains residues 
8-100; domain 2 contains residues 101-183, and domain 3 
comprises residues 200-303. The N-terminal residues 1-7 
play a role in dimerization and formation of the active site; 
the substrate-binding site is situated in a cleft between do-
mains 1 and 2. The sequence identity of the SARS and 
SARS-CoV-2 C3-like proteases is 96.08%, and both prote-
ases have formed a target for potential anti-viral phytochemi-
cals and traditional Chinese medicinal compounds [10]. 
 Two major factors regarding COVID-19 (among others) 
are that any therapeutic to the virus in the form of drugs is 
yet to be discovered. More than 100 vaccine manufacturers 
in various countries are rushing to develop one, and 26 can-
didate vaccines being on trial, and thus far, only three vac-
cines in the Western countries have obtained ‘emergency 
approval’ [11]. If a therapeutic is not quickly found, the ac-
tual life of humans and the economic stabilities of even richer 
countries may spin out of control. This is because the three 
vaccines developed by the USA and the European Union as 
well as two vaccines developed, one each by Russia and 
China, need two doses for proper vaccination. Considering 
that the world population is nearing 8 billion, that calls for 
the manufacture and timely administration of 16 billion 
doses of vaccine(s), which can prove difficult. According to 
the Congressional Research Service, “The economic fallout 
from the pandemic raises the risks of a global economic 
recession with levels of unemployment not experienced 
since the Great Depression of the 1930s. The human costs in 
terms of lives lost will permanently affect global economic 
growth in addition to the cost of rising levels of poverty, 
lives upended, careers derailed, and increased social unrest” 
[12]. It is to be noted that COVID-19 has caused 
103,920,917 infections and 2,247,202 deaths as of February 
2, 2021, throughout the various countries of the world 
(https://www.worldometers.info/coronavirus/). 
 One line of approach for drug discovery has been the 
‘repurposing’ of the information that has been gathered dur-
ing previous drug discovery efforts for SARS and MERS 

[13]. This approach has mainly focused on compounds ef-
fective against other viruses, preferably RNA viruses 
(COVID-19 being an RNA virus), and targeting potential 
entry mechanism(s) of the SARS-CoV-2 virus into host 
cells (reviewed in [13]). The other line of approach is to use 
plant extracts or selective phytochemicals to determine their 
anti-COVID-19 viral efficacies. Plants like Clitoria ter-
natea, Leucas aspera, and Cassia alata have been reported 
for anti-Corona virus (not COVID-19) activity [14]. Clero-
dendrum inerme has been mentioned as a potential herb in 
curing SARS-CoV-2 [15]. Extracts of L. aspera reportedly 
have anti-malarial activity [16]. Quinones isolated from C. 

alata also showed anti-malarial activity [17]. Thus, it is not 
uncommon for anti-malarial plants to possess also anti-viral 
activity. Since phytochemicals present in plants are respon-
sible for their pharmacological activities, it was of interest 
to screen through in silico approach (molecular docking) a 
number of reported anti-malarial phytochemicals for their 
ability to bind to the 3C-like protease of SARS-CoV-2. 

2. MATERIAL AND METHODS 

2.1. Three-Dimensional Structure of COVID-19 Major 
Protease (3C-like Protease) 

 The pdb file (6LU7) of the main protease of SARS-
CoV-2 (3C-like protease) was used in the present study 
[18]. The inhibitor (known as N3) was removed from the 
pdb file before using the protein’s structure in our molecular 
docking studies. The interacting residues of N3 with the 
protease are His41, Met49, Phe140, Leu141, Asn142, 
Gly143, His163, His164, Glu166, Leu167, Pro168, Gln189, 
Thr190, and Ala191. The active residues at the catalytic site 
of the 3C-like protease of SARS-CoV-2 are His41 and 
Cys145. The monomeric form of the protease was used for 
molecular docking [19].  

2.2. Compounds Used in Docking Studies 

 Anti-malarial phytochemicals present in different plant 
species belonging to a number of families were selected 
from a published review paper by Pan and others [20]. The 
criteria for selection was based on the phytochemical struc-
tures with the possibility of binding capacity to the 3C-like 
protease of COVID-19 taking into account that phytochemi-
cals from a number of groups like flavonoids, alkaloids, and 
terpenoids were included. Ligand molecules were down-
loaded from Pubchem [21] in sdf format. They were opti-
mized with the force field type MMFF94 using Openbable 
software and saved as pdbqt format. The structures of the 
compounds used in molecular docking studies with the 3C-
like protease are shown in Fig. (1). Several current and out 
of use anti-malarial drugs were also chosen for binding stud-
ies to the 3C-like protease as controls. 

2.3. Ligand Molecular Docking Studies 

 We have conducted molecular docking (blind) using 
AutoDock Vina [22]. We report ΔG values as an average of 
the top values from the docking program. In our figures, we 
show the pose of some phytochemicals bound to SARS-
CoV-2 main protease, as obtained from PyMOL and dis-
played in Discovery Studio [23]. 

3. RESULTS 

 Molecular docking has become an important and power-
ful tool in computer-assisted drug discovery. This tool can 
be utilized to characterize the binding interaction between a 
small molecule and a protein at the atomic level. We have 
used blind docking, which makes no assumption on the 
binding site [24]. Altogether 35 anti-malarial phytochemi-
cals (approved drugs against malaria and reportedly new 
anti-malarial phytochemicals) were evaluated in silico for 
their binding affinities (in molecular docking studies) to the 
3C-like protease of SARS-CoV-2. 
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 The structures of phytochemicals are shown in Fig. (1). 
A total of 8 anti-malarial phytochemicals like apigenin-7-O-
glucoside, decurvisine, luteolin-7-O-glucoside, sargabolide 
J, and shizukaols A, B, F, and G showed predicted high 
binding energies with ΔG values of -8.0 kcal/mol or higher. 
Shizukaols F and B demonstrated the best predicted binding 
energies of -9.5 and -9.8 kcal/mol, respectively, followed by 
decursivine with predicted binding energy of -9.1 kcal/mol. 
The results are shown in Table 1. As a group, shizukaols 

predicted good binding energies; the lowest predicted bind-
ing energy among the shizukaols of -6.9 kcal/mol was 
shown by shizukaol D. In comparison, some anti-malarial 
drugs like quinine, chloroquine, and artemisinin showed 
predicted binding energies of only -6.7, -4.6, and -7.0 
kcal/mol, respectively to the 3C-like protease of SARS-
CoV-2. However, the anti-malarial drug, mefloquine, 
showed a high predicted binding energy of -7.9 kcal/mol.  
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Fig. (1) contd…. 
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Fig. (1). Structure of phytochemicals. 
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Table 1. Binding energies of some reported anti-malarial phytochemicals to SARS-CoV-2 3CLpro/Mpro protease. 

Phytochemical 
Binding Energy (ΔG, kcal/mol) 

SARS-CoV-2 

Shizukaol B -9.8 

Shizukaol F -9.5 

Decursivine -9.1 

Shizukaol G -8.9 

Luteolin-7-O-glucoside -8.2 

Apigenin-7-O-glucoside -8.0 

Shizukaol A -8.0 

Sarglabolide J -8.0 

5-Hydroxynoracronycine -7.9 

trans-Avicennol -7.9 

Mefloquine -7.9 

Shizukaol M -7.8 

Shizukaol E -7.5 

Sarglabolide I -7.3 

Shizukaol N -7.1 

Shizukaol C -7.0 

Shizukaol K -7.0 

Artemisinin -7.0 

Shizukaol D -6.9 

Salvigenin -6.9 

5-Methoxycanthin-6-one -6.8 

1,5-Dihydroxy-2,3-dimethoxy-10-methyl-9-acridone -6.8 

Quinine -6.7 

Rhaphidecurperoxin -6.7 

Aspidocarpine -6.6 

Canthin-6-one -6.6 

8-Formyl-7-Hydroxy-5-methoxyflavanone -6.6 

Lippialactone -6.4 

5-Hydroxy-6-methoxyonychine -6.3 

Epigrandisin -6.2 

Hydroxychloroquine -6.0 

Grandisin -6.0 

Polysyphorin -5.7 

Rhaphidecursinol B -5.6 

Chloroquine -4.6 
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 The binding of 5-hydroxynoracronycine to SARS-CoV-
2 3C-like protease is shown in Fig. (2). 5-
Hydroxynoracronycine interacts with residues His41, 
Leu141, Gly143, Ser144, Cys145, and His163, that is more 
with domain 2 amino acids. The compound reacts with both 
amino residues in the catalytic site; His 41 and Cys145. Of 
the substrate binding residues in SARS-CoV-2 3C-like pro-
tease (41, 49, 143, 144, 163-167, and 187-192), the com-
pound interacts with His41, Gly143, Ser144, and His163, 
resulting in predicted binding energy of -7.9 kcal/mol.  

 
Fig. (2). Interaction of 5-hydroxynoracronycine to SARS-CoV-2 
3C-like protease. (A higher resolution / colour version of this figure 
is available in the electronic copy of the article). 

 

 The binding of decursivine to SARS-CoV-2 3C-like 
protease is shown in Fig. (3). Decursivine interacts with 
amino acid residues His41, Met49, Cys145, Met165, 
Arg188, and Gln189, creating a strong binding with the ac-
tive site as well as the first two domains of the SARS-CoV-
2 3C-like protease (predicted binding energy = -9.1 
kcal/mol). 
 The interaction of apigenin-7-O-glucoside with SARS-
CoV-2 3C-like protease is shown in Fig. (4). The flavonoid 
derivative interacts with Thr26, Ser144, Cys145, His163, 
Met165, and Arg188. The compound reacts with one amino 
acid residue in the catalytic site, namely Cys145, and a 
number of residues in the substrate-binding site, namely 
Ser144, His163, Met165, and Arg188, resulting in predicted 
binding energy of -8.0 kcal/mol.  
 Comparison of luteolin-7-O-glucoside (another flavon-
oid derivative) interaction with the protease shows that the 
compound interacts with Thr25, Thr26, His41, Ser46, 
Leu141, Cys145, and Met165 (Fig. 5). Thus, the compound 

reacts with both amino acid residues in the catalytic site, 
which is different from apigenin-7-O-glucoside. Other 
common interacting residues of SARS-CoV-2 3C-like pro-
tease with apigenin-7-O-glucoside and luteolin-7-O-
glucoside are Thr26 and Met165. The binding energy of 
luteolin-7-O-glucoside (-8.2 kcal/mol) is also close to that of 
apigenin-7-O-glucoside. 

 
Fig. (3). Interaction of decursivine to SARS-CoV-2 3C-like prote-
ase. (A higher resolution / colour version of this figure is available in 
the electronic copy of the article). 

 
Fig. (4). Interaction of apigenin-7-O-glucoside to SARS-CoV-2 
3C-like protease. (A higher resolution / colour version of this figure 
is available in the electronic copy of the article). 
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Fig. (5). Interaction of luteolin-7-O-glucoside to SARS-CoV-2 3C-
like protease. (A higher resolution / colour version of this figure is 
available in the electronic copy of the article). 

 

 The interaction of shizukaol B (a lindenane-type dimeric 
sesquiterpene) with SARS-CoV-2 3C-like protease is shown 
in Fig. (6). The compound was found in the molecular dock-
ing studies to interact with amino acid residues Gln107, 
Asn151, Ile249, and Phe294. Shizukaol B interacts with 
domains 2 and 3 of the 3C-like protease with a binding en-
ergy of -9.8 kcal/mol.  

4. DISCUSSION  

 Shizukaols are compounds possessing a common hepta-
cyclic framework containing more than ten contiguous 
stereocenters. The Chloranthaceae family is a good source 
of shizukaols [25]. Apigenin and luteolin are structurally 
related flavonoids with anti-cancer [26,27], anti-viral 
(against Enterovirus 71, Chikungunya virus, Japanese en-
cephalitis virus) [28-30], and anti-inflammatory activities 
[31]. Decursivine is an indole alkaloid. To our knowledge, 
this is the first report of decursivine and several shizukaols 
as potential anti-viral agents. These phytochemicals might 
act as lead compounds for new drugs against COVID-19, as 
may be inferred from their high binding energies (decur-
sivine, shizukaols B and F). 5-Hydroxynoracronycine is an 
acridone alkaloid, which has been previously reported for 
anti-viral activity against the Epstein-Barr virus [32,33]. 
Acridone alkaloids may be another class of compounds, 
which need attention as anti-COVID-19 agents because of 
previously reported antiviral activity of 5-
hydroxynoracronycine [32, 33], as well as the fairly strong 
binding of the compound to the 3C-like protease of SARS-
CoV-2, as observed in the present study (to be noted that the 
binding energy of 5-hydroxynoracronycine and the anti-
malarial drug mefloquine was the same at -7.9 kcal/mol). 

Sarglabolides, like shizukaols, are dimeric lindenane ses-
quiterpenoids and need further studies for their anti-COVID-
19 activities. 
 An important question is why anti-malarial drugs do act 
as anti-virals? This is not a new finding and certainly not 
arising from the recent controversy surrounding the use of 
the two anti-malarial drugs, chloroquine, and hydroxy-
chloroquine, for COVID-19 therapy [34]. It is possible that 
most anti-malarial drugs have complex structures, which 
enables them to have other activities besides anti-malarial 
activity. D’Alessandro and her group have reviewed the 
anti-viral activity of a number of anti-malarial drugs [35]. 
Among the various categories of anti-malarial drugs re-
viewed by the authors were artemisinin derivatives, aryl-
aminoalcohols, aminoquinolines, and ‘other anti-malarial 
drugs. The anti-viral effects of artemisinin (ART) deriva-
tives against human cytomegalovirus (HCMV) in vitro have 
been quite extensively studied and reviewed [36]. ART and 
artesunate (AS) reportedly inhibited hepatitis B virus 
(HBV); ART also inhibited replication of hepatitis C virus 
(HCV) [37] and down-regulated the oncogenic human papil-
loma virus-39 (HPV-39) proteins E6 and E7 in an in vitro 
model of cervical carcinoma [38]. 
 Various aryl-aminoalcohols have been reported to dem-
onstrate anti-viral activity; quinine sulfate was active against 
dengue virus strains in different cell lines [39]; a number of 
reports reviewed by D’Alessandro [35] suggest that meflo-
quine may be effective against human JC polyomavirus 
(JCPyV)) and Zika virus (ZKV). Among aminoquinolines, 
chloroquine (CQ) may be effective against chikungunya 
virus (CHIKV) and amodiaquine against ZKV [40,41]. CQ 
also inhibited entry and replication of enterovirus (EV)-A71 
in cell-based results [42], while amodiaquine reportedly 
showed inhibitory effects against dengue and Ebola virus 
[43,44]. Among other anti-malarial drugs are atovaquone 
and doxycycline, to name only two. Atovaquone is a naph-
thoquinone anti-malarial drug, which showed anti-viral ac-
tivity in vitro against CHIKV [45]. Doxycycline (DOX), a 
semi-synthetic tetracycline antibiotic, is widely used alone 
or in combination with quinine against chloroquine-resistant 
Plasmodium falciparum cases of malaria [46]. DOX report-
edly inhibited proliferation of a panel of human papillo-
mavirus (HPV)-positive cervical cancer cell lines [47] and 
inhibited DENV propagation [48]. 
 The present study opens up two future lines of research. 
The first is that if the compounds evaluated in the present 
study prove in practice to be ineffective against SARS-CoV-
2, derivatives, and analogues of these compounds may be 
prepared and evaluated for SARS-CoV-2 virucidal activity. 
For instance, enteroviruses (polio, Coxsackie, echoviruses) 
are common infection-causing agents in humans, particu-
larly the Coxsackie virus, which causes the common cold. 
Chloroquine has shown promising results against Cox-
sackievirus B-3. However, because of the chemical instabil-
ity of the oxazoline ring in chloroquine, two analogues, 
namely 1-H-pyrazolo[3,4-b]pyridine (1) and quinaldine (2) 
analogues have been synthesized, with anti-viral activities 
against the Coxsackie virus [49]. The second is that future 
research interest can focus on more new anti-malarial phy-
tochemicals, many of them being reviewed by Batista and 
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group [50]. To cite another example, Aloe extracts and Aloe 
phytochemical(s) have shown anti-plasmodial activity in 
vitro [51] and SARS-CoV-2 main protease binding in 
silico[52]. Such extracts can be promising sources of anti-
SARS-CoV-2 drugs as well as drugs that can act against 
both COVID-19 and malaria. A drug that can be used 
against both malaria and COVID-19 will have an advantage 
in malaria-prone countries among individuals who have 
contracted both malaria and COVID-19 and can now be 
treated with a single drug with presumably lesser or no ad-
verse effects.  

CONCLUSION 

 A number of reported anti-malarial phytochemicals were 
assessed in silico for their binding affinities to the 3C-like 
protease of SARS-CoV-2 (COVID-19). Among the phyto-
chemicals, flavonoid derivatives (apigenin-7-O-glucoside 
and luteolin 7-O-glucoside), acridone alkaloid (5-
hydroxynoracronycine), sesquiterpenoids (like shizukaols 
A, B, F, and G), pyranocoumarin compound (trans-
avicennol), and an indole alkaloid (decursivine) showed pre-
dicted high binding affinities to the 3C-like protease and merit 
potential for in vivo anti-viral studies against SARS- CoV-2. 
The major finding of the present study is that, at the very 
least several antimalarial compounds may prove to be of 
therapeutic value as anti-COVID-19 drugs. 
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