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ABSTRACT

Multiple vaccines have recently been developed, and almost all the countries are presently vaccinating
their population to tackle the COVID-19 pandemic. Most of the COVID-19 vaccines in use are administered
via intramuscular (IM) injection, eliciting protective humor and cellular immunity. COVID-19 intranasal (IN)
vaccines are also being developed that have shown promising ability to induce a significant amount of
antibody-mediated immune response and a robust cell-mediated immunity as well as hold the added
ability to stimulate protective mucosal immunity along with the additional advantage of the ease of
administration as compared to IM injected vaccines. By inducing secretory IgA antibody responses
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specifically in the nasal compartment, the intranasal SARS-CoV-2 vaccine can prevent virus infection,
replication, shedding, and disease development, as well as possibly limits virus transmission. This article
highlights the current progress, advantages, prospects, and challenges in developing intranasal COVID-19

vaccines for countering the ongoing pandemic.

Introduction

The ongoing coronavirus disease 2019 (COVID-19) pan-
demic caused by severe acute respiratory syndrome coro-
navirus-2 (SARS-CoV-2) has till date (February 8, 2022)
affected hundreds of millions of people while leading to
>5.7 million deaths worldwide." A very rapid global spread
of COVID-19 posed an international health emergency as
a devastating pandemic of the 21st Century. Though several
drugs, therapies, and immunomodulatory regimens such as
remdesivir, ivermectin, dexamethasone, convalescent
plasma therapy, antibody-based immunotherapies, and
monoclonal antibodies (MAbs) have been identified and
used in emergency purposes for reducing the disease sever-
ity in patients with COVID-19 as well as others are being
investigated; however, the choice of effective curative drugs
and medicines are yet to be identified.””’

Various research advances paved the way for developing
multiple COVID-19 vaccines in less than a year by exploring
several vaccine platforms and advances. After very high efforts,
researchers have developed COVID-19 vaccines such as
mRNA vaccine, DNA vaccine, viral vector vaccine, virus-like
particles (VLPs), recombinant vaccine, protein subunit-based
vaccines, live attenuated and inactivated virus vaccines that are
being used for vaccinating people across the globe under

different vaccination programs that are in progress in several
countries. A few vaccines have been approved for use, and
vaccination programs are currently underway in various
countries® '* while others newer and versatile vaccine produc-
tion platforms including recombinant vaccines, plant-based
vaccine, immunoinformatics-based multi-epitope subunit vac-
cine, artificial intelligence, and CRISPR/Cas technology-based
vaccine, nanotechnology-based vaccines (nano-vaccine) and
others are also under high progress and currently in the pipe-
line for developing appropriate vaccine candidates to counter
SARS-CoV-2.1718

Different kinds of vaccines in use have shown a high degree
of efficacy with variable protective levels of up to 95% (70-95%
range) in vaccinated individuals against COVID-19.2>!>19-2!
In the era of various advances in developing vaccines, few
issues of concerns, debates, and challenges related to vaccines
include induction of variable protective levels, defining booster
doses, the feasibility of virus re-infection and outcome of dis-
ease course in vaccinated individuals particularly amidst emer-
ging variants and mutants, need for further modifying the
vaccines as per main mutants/variants, levels of herd immunity
developed, separate clinical trials in elderly, pregnant women
and children or need same/special vaccine for these, vaccine
hesitancy, diplomacy, and equitable access to the worldwide

CONTACT Kuldeep Dhama @ kdhama@rediffmail.com @ Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India

© 2022 The Author(s). Published with license by Taylor & Francis Group, LLC.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/),
which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.


http://orcid.org/0000-0001-7469-4752
http://orcid.org/0000-0002-7783-7138
http://orcid.org/0000-0001-7763-5547
http://orcid.org/0000-0003-3188-2272
http://orcid.org/0000-0002-6774-9847
http://orcid.org/0000-0003-4552-4513
http://orcid.org/0000-0002-7004-7694
http://orcid.org/0000-0002-9471-2767
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/21645515.2022.2045853&domain=pdf&date_stamp=2022-05-19

€2045853-2 K. DHAMA ET AL.

population and completing vaccination process at the earliest
of worldwide population, these need to be addressed
adequately.”* >

Currently, all available COVID-19 vaccines are adminis-
tered by intramuscular (IM) injection, which is an invasive
method, while many researchers are focusing on developing
an effective vaccine that can be administered through nasal or
oral routes. For instance, in mucosally transmitted illnesses like
influenza and SARS-CoV-2 viruses, administering immuniza-
tions through the nasal route is regarded as extremely appeal-
ing since it induces a dual systemic and a robust local mucosal
immune response. Since there is no need for trained medical
personnel to deliver IN dosage, the nasal vaccines would have
greater ease to administer and render desired efficacy. This is
advantageous, particularly in developing nations, and therefore
nasal vaccination provides a more cost-effective and conveni-
ent approach to administering vaccinations during disease
outbreaks.”***

COVID-19 approved vaccines delivered intramuscularly
elicit antibody mediated and cell-mediated immunity in order
to avoid viral replication and to provide resistance against the
development of COVID-19. However, existing IM vaccinations
are meant to induce systemic immune response without gen-
erating mucosal protection. Therefore, protections offered by
IM vaccines may not be sufficient to deal with virus replication
and shedding in the upper respiratory and so may not stop
nasal SARS-CoV-2 infection. The absence of a local secretory
IgA (sIgA) antibody immune response could pose a risk of
SARS-CoV-2 transmission from vaccinated people as they still
can be infected and therefore could spread the infection®
(Figure 1).

Recently, good progress has been made to develop vaccines
and drugs which can be given via intranasal route that have
benefits of ease of administration as being noninvasive route,
and especially generating mucosal immunity apart from
humoral and cellular immunity to render protection against
COVID-19.>***! Despite significant progress in developing
a safe and reliable vaccine; there is still a need to discover better
vaccine candidates that are safe and efficient for the great
majority of the population. In this context, few of the novel
intranasal COVID-19 vaccines are being developed, with
encouraging preclinical findings in non-human primates and
other animal models.”>*****® An IM dosage followed by an
internasal vaccination might lead to a robust immune
response, which might be a reliable approach to attain herd
immunity in the population.*® Furthermore, IN vaccines can
elicit a substantial amount of B cells mediated and T cell-
mediated immune response along with desired mucosal immu-
nity. This article presents an overview of the efforts and pro-
gress being made in designing and developing vaccines that
could be administered through nasal route and as nasal spray
to counter SARS-CoV-2/COVID-19.

Intranasal COVID-19 vaccines

The primary entry portal for coronaviruses (CoVs) in the
human body is constituted by oral and nasal mucosal surfaces,
and the nasal compartment is the first-line barrier to SARS-
CoV-2 entry that needs to be breached by the virus, after which

the virus spread and disseminate to the lungs, therefore muco-
sal (IN) vaccination can render a safe and effective way for the
generation of long-lasting systemic and humoral immune
responses as well as mucosal immunity (sIgA) in both upper
and lower respiratory tracts to bestow defense against SARS-
CoV-2 infection.***”?®*! Intranasal (IN) administration of
SARS-CoV-2 vaccines can prevent from virus infection, repli-
cation, shedding, and disease development as well as possibly
limits virus transmission.’* Priming with IM vaccine and
a booster with IN vaccination may likely lead to superior
immune responses while preventing or sturdy dropping of
viral replication in respiratory tracts.”* A variety of intranasal
COVID-19 vaccines are currently under development, and
these have shown attractive and promising avenues in counter-
ing COVID-19, which are discussed briefly in this section
(Table 1).

An intranasal vaccine, namely AACOVID, has been devel-
oped to induce a robust and concentrated immune response to
SARS-CoV-2 receptor-binding domain (RBD) by inducing
mucosal IgA, serum neutralizing antibodies, and T cells (CD4
+ and CD8+) along with the expressions of cytokines belong-
ing to Thl cells. By potentially enhancing both the systemic
and local mucosal immunity, AdCOVID is considered
a reliable and efficient IN vaccine candidate against COVID-
19.

Recently, a comparative study of IN and IM administration
of a chimpanzee adenovirus-vectored vaccine expressing a pre-
fusion stabilized S protein (ChAd-SARS-CoV-2-S) was con-
ducted. IM vaccination produced a strong antibody-mediated
immune response capable of neutralizing the SARS-CoV-2
infection, whereas immune response was greater in hamsters
receiving IN vaccine. Further, the immunized hamsters were
protected from SARS-CoV-2 exposure, and viral infection was
unable to cause weight loss in the hamsters. In addition, lower
viral load in both intranasal and pulmonary swabs was
observed along with decreased transcripts levels of inflamma-
tory genes and improved disease conditions. The vaccine
offered greater protection from SARS-CoV-2 infection and
inflammation by IN vaccination and reduced the dissemina-
tion of viral particles.*> Moreover, receptor-binding domain
(RBD)-specific immune responses in mice inoculated with
recombinant SARS-CoV-2-RBD-based subunit vaccine admi-
nistered through IN inoculation and IM injection were com-
pared in another recent study. The IN immunization resulted
in a strong antibody-mediated immune response with the
increased levels of IgG antibodies and also a considerable
amount of mucosal immune response. As a result of these
findings, noninvasive IN vaccines should be considered for
SARS-CoV-2 vaccine development in the coming time.**

Immunization triggered by transduction of respiratory tract
cells of mice with a Lentiviral vector (LV) though elicited
neutralizing antibodies with high levels of serum neutralizing
activity against S (spike) glycoprotein of SARS-CoV-2 but
provided only partial protection. Intranasal stimulation of the
immune system in the respiratory system, on the other hand,
results in a reduction in lung infection rates and local inflam-
mation. In addition, in golden hamsters, which are normally
restrictive to SARS-CoV-2 replication and closely mimic
COVID-19 physiopathology in humans, both integrative and
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Figure 1. The schematic differentiation of immune response elicited by intranasal vaccine to intramuscular vaccine which is substantially efficient in reduction of the
viral shedding as in case of intramuscular vaccination the shedding of viral particles is comparatively higher and possess the greater risks of transmission. the generation
of secretory IgA in upper respiratory tract along with generation of IgG and effector T cells has been linked with the efficient and robust immune response against SARS-
CoV-2. the robust mucosal immune response elicited by in vaccine lead to reduced spread of viral particles. Abbreviations: DC, dendritic cells; NALT, nasal-associated
lymphoid tissues; BALT, Bronchus-associated lymphoid tissue; Ig., Immunoglobulin; Th, T helper cells. the figure was designed by Biorender.Com program (https://

biorender.com/, accessed on 15 August 2021).

non-integrative LV systems revealed strong clinical effective-
ness and impeded detrimental damage of lungs. The findings
have shown that SARS-CoV-2 LV-based vaccination approach
has a significant prophylactic effect, and IN vaccination against
COVID-19 is an effective strategy.*’ Furthermore, to stimulate
mucosal immunity as well as systemic immunity, the trimeric
or monomeric spike protein was combined with a liposomal
STING agonist as an adjuvant in an IN subunit vaccination.
A strong antibody-mediated immune response was observed
along with a higher concentration of IgA in the lung and nasal
compartments. Despite strong B cell-mediated response,
a substantial amount of T cell-mediated immune response
was observed in the lungs of the immunized mice with this
vaccine. Simultaneous activation of both antibody-mediated

and cell-mediated immune responses in a germinal center-
like manner was observed within the nasal-associated lym-
phoid tissues (NALT), supporting the significance of this
approach for the achievement of long-lasting immunity.®
Another study generated a cold-adapted live-attenuated
vaccine by changing SARS-CoV-2 growth in Vero cells from
37°C to 22°C, which could be given as a nasal spray in humans.
In intranasally inoculated K18-hACE2 mice that are highly
susceptible to SARS-CoV-2 infections, a single dose of vaccine-
elicited a significant B and T cell-mediated immune response
as well as mucosal IgA antibodies. The vaccinated mice were
fully protected against SARS-CoV-2 infection, with minor
bodyweight loss, fewer deaths, and slight viral expression in
numerous vital organs, such as the brain and kidneys.®' These
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findings imply that nasal vaccination could be a viable method
for eliciting a robust immune response.”®" Furthermore, the
SARS-CoV-2 nucleocapsid (N) protein has been recom-
mended as a viable vaccine target. Mice injected with
N protein had a significant number of T cells as well as an
antibody-mediated immunological response. The majority of
vaccination methods have concentrated on inducing
a considerable B cell driven immune response; however, it is
critical to discover the T cell responses generated by SARS-
CoV-2 N protein. In this regard, IN vaccination has been
proposed to elicit a protective T cell-mediated immune
response, which is generally minimal when immunized with
SARS-CoV N protein intradermally. In BALB/c mice immu-
nized intranasally with recombinant adenovirus type-5 expres-
sing SARS-CoV-2 N protein, a significant amount of T cell
mediated immune response was reported in the lungs.
Moreover, a substantial amount of CD4 T cells mediated
immune response was recorded in the spleen, which was linked
with enhanced antibody-mediated immune response. These
findings lend credence to the idea that the IN vaccines are
efficient and reliable in inducing the immune response.”

In addition, whereas most vaccination techniques have con-
centrated on systemic immunization, the preventive effect of
two adjuvanted subunit vaccines, including an IM-primed
/boosted vaccine and an IM-primed/IN-boosted mucosal vac-
cine, was examined. The IM vaccination with alum caused
a strong antibody-mediated immune response, while the IN
vaccine with nanoparticles such as IL-15 and TLR agonists
generated lower T cell and antibody responses, yet greater
dimeric IgA and IFN-alpha production. Nonetheless, upon
SARS-CoV-2 exposure, no subject had detectable sub-
genomic RNA in the upper or lower respiratory system, prov-
ing adequate immunity against viral infection. In all instances,
both vaccinations have been shown to protect against respira-
tory SARS-CoV-2 exposure.*®

Designing a molecular vaccine based on nanotechnology
advancements has been proposed by utilizing nanoconjugate
containing inorganic nanoparticle layered double hydroxide
intercalated with shRNA-plasmid possessing a sequence target-
ing viral genome or viral mRNA. This vaccine could be used as
a nasal spray for delivering shRNA-plasmid to the target site,
having the advantages of being biocompatible, facilitating
stable knockdown to the target cells, and considered stable in
the nasal mucosa.”

In collaboration with Codagenix (United States), the Serum
Institute of India has initiated manufacturing COVI-VAC as
a live-attenuated intranasal COVID-19 vaccine that is presently
undergoing Phase 1 clinical trial (NCT04619628) with regard to
safety and immunogenicity against SARS-CoV-2.°>** Bharat
Biotech has also initiated the phase 1 trial (NCT04751682) of
single-dose IN vaccine in India (BBV154, replication-deficient
adenovirus vectored vaccine) against COVID-19.°>%

In several recent studies, the IN route of vaccination has
been an efficient way to decrease viral shedding while generat-
ing a significant immune response.®”*® Hassan et al. reported
that IM injections of ChAd-SARS-CoV-2-§ stimulate vigorous
humoral and cell-mediated immunity and helps in providing
protection against lung infection and inflammation but do not
render sterilizing immunity, as indicated by viral RNA

HUMAN VACCINES & IMMUNOTHERAPEUTICS . €2045853-5

detection and activation of anti-nucleoprotein antibodies
upon SARS-CoV-2 infection. On the other hand, in both
upper and lower respiratory tracts, a single IN dosage of ChAd-
SARS-CoV-2-S generated large amounts of neutralizing anti-
bodies, enhanced systemic and mucosal immunoglobulin
A (IgA) and T cell responses, and nearly provided complete
prevention from SARS-CoV-2 infection.’® The same research
group recently released a follow-up study in which Rhesus
macaques were inoculated with ChAd-control or ChAd-SARS-
CoV-2-S and then challenged with SARS-CoV-2 through
a combination of intranasal and intrabronchial methods one
month later. After the SARS-CoV-2 infection, a single IN
dosage of ChAd-SARS-CoV-2-S generated neutralizing anti-
bodies and T cell immunity and limited or prevented viral
infection in the upper and lower respiratory tracts. Because
ChAd-SARS-CoV-2-S protects nonhuman primates against
SARS-CoV-2 infection and transmission, it is a good option
for minimizing SARS-CoV-2 infections and transmission in
people.”” In another study, employing a SARS-CoV-2 virus
with D614 G mutation in its S protein, the intranasally deliv-
ered ChAdOx1 nCoV-19 was found to lower virus dissemina-
tion as observed by a reduction in viral shedding. In both
a direct challenge and a transmission scenario, the viral load
in nasal swabs of vaccinated hamsters was observed to be much
lower than controls. Any viral RNA or infectious virus was not
identified in lung tissues. Intranasal immunization of rhesus
macaques lowered the viral load in bronchoalveolar lavage and
lower respiratory tract tissues, and decreased viral shedding.
The IN vaccination decreased viral shedding as observed in two
separate SARS-CoV-2 animal models, indicating that it should
be investigated further as a possible immunization route for
COVID-19 vaccines.®’

For COVID-19 vaccination, a recombinant type 5 adeno-
virus vector carrying gene for the SARS-CoV-2 S1 subunit
antigen (Ad5.SARS-CoV-2-S1) was utilized to immunize
mice through the IN route. A single Ad5.SARS-CoV-2-S1
vaccination delivered by IN route elicited potent antibody
and cellular immune responses. Considerable levels of S1-
specific immunoglobulins (IgGs), including IgG1 and IgG2a
endpoint titers, were seen after two weeks of vaccination, and
the antibodies produced were long-lasting. In comparison to
unvaccinated control groups, Ad5.SARS-CoV-2-S1 injection
resulted in S1-specific B cells as well as antigen-specific T cell
responses. The IN administration has been shown to be
a potential method for triggering cellular immune responses.”’

The potential of nanoparticles (NPs) synthesized with inulin
acetate (InAc) (InAc-NPs) as an IN-vaccine delivery strategy to
produce both mucosal and systemic immunity has been
reported. Compared to PLGA (Poly lactic-co-glycolic acid)-
NPs as a delivery strategy, IN vaccination with antigen-loaded
InAc-NPs resulted in 65-fold and 19-fold greater serum IgGl
and IgG2a titers, respectively. InAc-NPs also enhanced the pro-
duction of sIgA at numerous mucosal locations, including nasal-
associated lymphoid tissues (NALTS), the lungs, and the colon,
resulting in a significant memory response suggestive of both
humoral and cellular immune system activation. Studies with
InAc-NPs provided the groundwork for a prospective IN deliv-
ery strategy for mucosal immunization by simultaneously acti-
vating both systemic and mucosal immunity.”!
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In a recent study, N, N, N-trimethyl chitosan nanoparticles
(TMC NPs) were incorporated with RBD (receptor-binding
domain) of SARS-CoV-2 S-protein and tested for their ability
to induce an immune response when administered through
the intranasal route. The presence of IgG and IgA responses
in BALT (Bronchus-associated lymphoid tissue) and the
lungs of vaccinated mice demonstrated that intranasal admin-
istration of RBD-TMC NPs to mice generated significant local
mucosal immunity. In addition, rodents given this immuno-
gen substrate intranasally produced a robust systemic anti-
body mediated immune response, comprising serum IgG,
IgGl, IgG2a, IgA, and neutralizing antibodies. Furthermore,
compared to animals given soluble RBD immunogen, these
immunized mice showed considerably more significant num-
bers of activated splenic CD4+ and CD8+ cells. Such data,
taken together, point to an alternate vaccination pathway that
closely resembles the natural path of SARS-CoV-2 infection.
Not only did this mode of delivery activates local mucosal
responses, but it also activated the immune system’s systemic
c:omponent.72

Immune responses generated by mucosal homologous plas-
mid and a heterologous vaccination method, combining
a plasmid vaccine and a Modified Vaccinia Ankara (MVA)
expressing SARS-CoV-2 S and N antigens, revealed that only
the heterologous IN vaccination technique resulted in neutra-
lizing antibodies against SARS-CoV-2 in mice’s serum.
Neutralizing antibodies against SARS-CoV-2 were also
reported in the bronchoalveolar lavage of mice which sug-
gested significant levels of efficiency and reliability of this
vaccination as compared to IM vaccination. In the lungs and
spleens of immunized mice, the same prime/boost method
resulted in the production of type 1 and type 17 T cell
responses and polyfunctional T cells producing various type 1
cytokines (e.g., IFN-alpha, TNF, IL-2). The plasmid homolo-
gous vaccination method, on the other hand, resulted in the
production of local mono and polyfunctional T cells that
secrete IFN-gamma. The findings of this investigation suggest
that QAC-nano vaccines and intranasal immunization can
generate significant mucosal immune responses toward
respiratory coronaviruses.”>

Potential advantages of intranasal COVID-19 vaccines
over the intramuscular vaccines

Several of the experiments described above have demonstrated
the efficacy of IN immunization and attracted scientists™ curi-
osity in learning more about the potential of intranasal vacci-
nations against COVID-19. In this regard, various research
groups have emphasized certain benefits of intranasal vaccina-
tions over intramuscular immunization.”*%”¢%7*

e A single dose of an effective SARS-CoV-2 vaccine candi-
date via IN route may induce the substantial amount of
neutralizing antibodies, boosts mucosal IgA and T cell
responses, and almost completely protects viral infection
in both the upper and lower respiratory tracts (Figure 1).

¢ Intranasal immunization can be an effective approach to
minimize viral shedding and spread, which might be
advantageous over IM vaccines.

e The viral load in the upper and lower respiratory tract
tissues can be reduced by IN immunization.

e Nasal vaccinations are appealing as an alternative to
injectable vaccinations since they may allow for a lower
dosage than IM administration.

e The IN vaccine can be administered at the appropriate
region, such as nasal-associated lymphoid tissues
(NALT), to induce a substantial amount of mucosal
immunity.

e Owing to ease of administration, nasal vaccinations may
not always need to be given by a health-care professional.

e It is indeed a better option for infants who do not like
injections in nature. Additionally, nasal vaccinations may
be administered using simple devices, which eliminates
the requirement for sterilized settings during vaccination,
which is particularly beneficial for immunization pro-
grams in developing nations.

e Dry powder nasal vaccines have been created, which may
allow the easy storage and transportation of the vaccines.
In addition, IN vaccinations permit self-administration
and may be manufactured to persist at room temperature,
easing transportation and storage procedures. This
approach can be highly advantageous in developing
countries such as India. However, the preliminary studies
are yet to be approved in the coming time.

The potential strengths associated with the use of an IN vaccine
to boost a subject previously immunized systemically with IM
vaccines include induction of a robust immune response in terms
of significant protective humoral and cellular immunity, activa-
tion of mucosal immunity (IgA production) in both the upper and
lower respiratory tracts, which could inhibit viral multiplication
and decrease virus shedding via nasal mucosa that acts as the first-
line barrier to the virus entrance before dissemination into the
lungs, thus preventing the transmission and spread of SARS-CoV
-2 as well as to attain herd immunity in the population. The early
restriction of viral replication in the nasal mucosa and clearance of
SARS-CoV-2 infection via robust protective immunity including
mucosal immune responses reflects the potency of intranasal
COVID-19 vaccines in the mitigation of the rising cases of virus
reinfection during the pandemic.”””””

Challenges in developing COVID-19 intranasal
vaccines

Determining immunization platforms, the number of doses
required, route of delivery, and time to acquire maximal pro-
tection have been discussed in recent conversations on vacci-
nation tactics against SARS-CoV-2. The VSV-SARS2-EBOV
vaccine, fast-acting vesicular stomatitis virus-based vaccine
produced from licensed Ebola virus (EBOV) vaccine that
expresses SARS-CoV-2 S protein and the EBOV glycoprotein,
when given in a single dose via IM route to rhesus macaques,
showed protection over ten days with no symptoms of
COVID-19 pneumonia. It’s IN immunization resulted in
reduced immunogenicity and increased COVID-19 pneumo-
nia as compared to control animals. While both the IM and IN
vaccination resulted in the induction of neutralizing antibody
titers, only the IM vaccine elicited a strong cellular



immunological response. These findings were corroborated
with RNA sequencing data, indicating strong activation of
innate and adaptive immune transcriptional markers in the
lungs of only IM-vaccinated animals. Such findings show that
injecting VSV-SARS2-EBOV into the bloodstream provides
fast pro‘[ection.78 These findings, however, contradict with
those of other researchers suggesting the potentialities of IN
vaccines.

Moreover, there is scarcity of concrete evidences about the
effectiveness of IN vaccines, however preliminary data has
shown that the IN immunization can protect the host from
illness. The effectiveness of an IN vaccination may be influ-
enced by the dose or vaccine platform used. Nasal immuniza-
tion, on the other hand, could be a successful route to acquire
herd immunity in the vast majority of the population since it
can offer sterilizing immunity, blocking interhuman
transmission.”” While clinical trials of various intranasal vac-
cines are now underway, including AdCOVID (Altimmune,
Gaitersburg, USA), further research is needed to establish the
best effective vaccination method.*® Furthermore, elaborative
studies should discover the most eflicient routes of vaccine
administration based on the different vaccine platforms being
potentially explored, as well as the processes that underpin the
efficacy of various delivery routes.*’ In addition to the debata-
ble efficacy of IN vaccines, there are a number of challenges
and shortcomings that must be addressed. These are described
below:

e Recently, the inability of IN vaccine to induce effective
and long-lasting immunity has been considered a serious
concern; this might lead to the waning of protection
rapidly. This has been associated with the sticky mucus
in the respiratory system, which acts as a barrier for
pathogens that may obstruct vaccine accessibility and
immune activation, resulting in low immunogenicity
and rapid loss of protective immunity.**

e IN vaccines may be created using a variety of platforms,
including viral vectors and protein subunit vaccinations.
The safety of IN vaccines is a critical factor to consider.
Whole pathogen-based vaccinations have raised some
concerns due to the likelihood of reverting to
a replicating form.*>® This condition has also been
found with the oral polio vaccination; however, it is
quite unusual. The safety of live attenuated vaccines
must be proven over a lengthy period of time. Berna
Biotech, a Swiss firm, canceled an intranasal flu vaccina-
tion because it was related to a greater incidence of Bell’s
palsy. 554

e Despite the fact that IN vaccines can induce both IgA and
IgG antibodies in the upper and lower respiratory tract
and provide a substantial amount of humoral immune
response. However, it is to be considered that some IN
vaccines are not effective in generating IgG antibodies in
the lower respiratory tract,”> which can lead to the
reduced protectiveness of IN vaccines.

e Moreover, the likelihood of retrograde transport to the
brain via olfactory nerves, which has been reported pre-
viously in live attenuated adenovirus, is a serious concern
associated with IN vaccines.®>*>%

HUMAN VACCINES & IMMUNOTHERAPEUTICS . €2045853-7

e Adjuvants, on the other hand, are critical for significant
immune responses, particularly with protein subunit vac-
cines. However, because of their immunomodulatory
qualities, adjuvants might cause complications in terms
of the safety of IN vaccines.®” In the following section, we
will shed some light on the possible roles of adjuvants in
the development of IN vaccine and any possible concerns
associated with them.

Adjuvants in the development of intranasal vaccines
against COVID-19

The inclusion of immunostimulatory adjuvants to vaccines
may be required to enhance the immune reaction, particularly
as an integral component in most of the inactivated and sub-
unit vaccine formulations, vaccinations containing purified
protein- or antigen-based vaccines, including component or
recombinant vaccines. As vaccine components, adjuvants acti-
vate the innate immune system- and trigger-specific adaptive
immune responses, and enhance the magnitude, breadth, and
durability of the immune response.””*> Alum, chitosan, and
bacterial toxins like cholera toxin (CT), as well as inactivated
viral envelopes like recombinant adenoviruses, liposomes,
cytokines, CpG oligodeoxynucleotides, Toll-like receptor-4
(TLR) agonists, nanoparticles, and others have been utilized
as potential adjuvants for the mucosal vaccines including IN
vaccines.””** After the use of bacterial toxins in nasal vaccina-
tions, certain adverse consequences have been recorded.’
Moreover, allergic reactions have been reported in the subjects
administered with a registered IN vaccine, namely tetravalent
cold-adapted live-attenuated influenza vaccine (LAIV). The
allergic reactions have been correlated with the utilization of
eggs in LAIV vaccine production process, which causes pro-
blems in asthma patients.”® Various scientific advances in
gaining knowledge about innate immunity and systems vacci-
nology are paving ways to design and develop different kinds of
novel adjuvants, including molecular adjuvants for use in vac-
cines against infectious diseases, challenging pathogens includ-
ing coronaviruses, tackling COVID-19, and future
pandemics.®*?*9719% Incorporation of effective adjuvants
in IN vaccines would enhance the protective immune
responses of these vaccines and aid in fighting COVID-19 in
a better way. SARS-CoV-2 virus has been reported to enter the
brain by a transneural pathway into the olfactory epithelium
(where ACE2 is expressed) and then spreads.'® It is yet not
established that the recombinant vectors harboring the
S-protein-producing gene are able to penetrate the olfactory
region and cause significant side effects. Adenovirus has been
used to transfer medications from the nose to the brain,
although it has not been proven that the adenovirus directly
penetrated the brain, just like medicine action mechanisms.'**
Nanoparticles (NPs) entering the olfactory tissues through
tight junctions must be less than 20 nm, but particles entering
via the transcellular pathway into olfactory tissue cells or olfac-
tory neuron cells need to ideally be less than 100 nm.'*>!'%
Many NPs used for COVID-19 intranasal vaccines have
a diameter of around 90 nm, and it is critical to remember
that the endocytosis process is also influenced by particle
features such as charge and surface attributes as well as particle
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size. Additionally, there is a difference between SARS-CoV-2
virus particles that enter the nasal cavity by normal inhalation
and vaccines’ particles injected with greater power into the
cavity. As a result, unless a sophisticated nasal delivery system
is utilized, a nasal spray reaching the olfactory area at the top of
the nasal cavity is exceedingly difficult. Hence, it’s hard to
ascertain whether immunization carriers will penetrate the
olfactory tissues or whether any harmful occurrences will
appear as a result of this entry. Toxicological findings will be
required in accordance with standard regulatory requirements
prior to the nasal SARS-CoV-2 vaccines are approved for
vaccination purposes.”*

Conclusion and future prospects

Almost all available vaccines against COVID-19 are delivered
by IM administrations. IM injected vaccines are primarily
intended to generate both antibody mediated and T cell
mediated immune responses. These IM vaccines have shown
high levels of effectiveness by eliciting a significant amount of
immune response. Still, it has been found that these vaccines
are inefficient in stimulating IgA secretion in mucosal cells,
which may not be efficient in controlling the shedding of viral
particles in the upper respiratory tract. Preclinical results in
numerous animal models have demonstrated the promising
potentials of IN COVID-19 vaccination, which can induce
a significant amount of protective humoral antibody immune
response, cellular immunity (T cell mediated) as well as muco-
sal immune response (IgA production) in the respiratory tract,
and can prevent or reduce viral multiplication, viral particle
shedding, and transmission. A range of IN vaccines have been
generated by clinical investigations in mouse models and rhe-
sus macaques, which have demonstrated activation of the
mucosal immunity (sIgA) in both the upper and lower respira-
tory tracts along with a significant degree of humoral and cell
mediated immune responses that can inhibit viral reproduc-
tion and transmission/spread. The intranasal vaccine is an
exciting method for preventing COVID-19 since the nasal
mucosa provides the first-line barrier to SARS-CoV-2 entrance
before dissemination into the lungs. Hence, developing effec-
tive and reliable intranasal vaccines is crucial at this time.
There is no doubt that IN vaccines have their own set of
potential advantages over the IM vaccine. However, the short-
comings associated with them cannot be ignored. The overall
immunostimulatory effectiveness of a vaccine is determined by
the immunization type chosen, functional ingredients such as
vaccine adjuvants, and vaccine carriers such as NPs (nanoparti-
cles), surface-modified NPs, and virus-like particles. Large-scale
production, in-process quality control, and satisfying regulatory
standards are all challenges in manufacturing the IN vaccine at
the commercial level. Hopefully, the availability of intranasal
vaccines may be made feasible in the coming future after further
evaluation of such vaccines being developed with large-scale
clinical studies and trials to incorporate them in worldwide
vaccination programs. According to current statistics, more
than 10 pharmaceutical companies are developing intranasal
vaccinations, with five of them having reached the early phases
of clinical trials. Nonetheless, we believe that an intranasal
COVID-19 immunization may be available soon. Moreover, in

our opinion, the second generation IN vaccines could signifi-
cantly increase the capacity of several developing countries to
restrain the deleterious consequences of COVID-19, where
immunization is still a significant concern for the government.
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