07, August 2021 |
Authors:
Reza Sorna Rasel ShiblyCOVID-19 is a devastating pandemic in the history of humankind. It is a highly contagious flu that can spread from human to human. For being so contagious, detecting patients with it and isolating them has become the primary concern for healthcare professionals. However, identifying COVID-19 patients with a Polymerase chain reaction (PCR) test can sometimes be problematic and time-consuming. Therefore, detecting patients with this virus from X-ray chest images can be a perfect alternative to the de-facto standard PCR test. This article aims at providing such a decision support system that can detect COVID-19 patients with the help of X-ray images. To do that, a novel convolutional neural network (CNN) based architecture, namely ModCOVNN, has been introduced. To determine whether the proposed model works with good efficiency, two CNN-based architectures – VGG16 and VGG19 have been developed for the detection task. The experimental results of this study have proved that the proposed architecture has outperformed the other two models with 98.08% accuracy, 98.14% precision, and 98.4% recall. This result indicates that proper detection of COVID-19 patients with the help of X-ray images of the chest is possible using machine learning methods with high accuracy. This type of data-driven system can help us to overcome the current appalling situation throughout the world.
Recent Researches
Copyright © 2024 Bangladesh Health Watch All Rights Reserved.