Titanium (IV) complexes of some tetra-dentate symmetrical bis-Schiff bases of 1,6-hexanediamine: Synthesis, characterization, and in silico prediction of potential inhibitor against coronavirus (SARS-CoV-2)

  • Home
  • Titanium (IV) complexes of some tetra-dentate symmetrical bis-Schiff bases of 1,6-hexanediamine: Synthesis, characterization, and in silico prediction of potential inhibitor against coronavirus (SARS-CoV-2)

Titanium (IV) complexes of some tetra-dentate symmetrical bis-Schiff bases of 1,6-hexanediamine: Synthesis, characterization, and in silico prediction of potential inhibitor against coronavirus (SARS-CoV-2)

19, October 2020 |

Authors:

Uddin Md. S. Amin Md. S. Rahman S. Khandaker W. Shumi S.M. Rahman

Abstract


Symmetrical bis-Schiff bases (LH2) have been synthesized by the condensation of 1,6-hexanediamine (hn) and carbonyl or dicarbonyl. One of the synthesized Schiff bases has been subjected to the molecular docking for the prediction of their potentiality against coronavirus (SARS-CoV-2). Molecular docking rev- ealed that tested Schiff base possessed high binding affinity with the receptor protein of SARS CoV-2 compared with hydroxychloroquine (HCQ). The ADMET analysis showed that ligand is non-carcinogenic and less toxic than standard HCQ. Schiff bases acting as dibasic tetra-dentate ligands formed tita- nium (IV) complexes of the type [TiL(H2O)2Cl2] or [TiL(H2O)2]Cl2 being coor- dinated through ONNO donor atoms. Ligands and complexes were characterized by the elemental analysis and physicochemical and spectro- scopic data including FTIR, 1H NMR, mass spectra, UV-Visible spectra, molar conductance, and magnetic measurement. Optimized structures obtained from quantum chemical calculations supported the formation of complexes. Antibacterial, antifungal, and anti-oxidant activity assessments have been studied for synthesized ligands and complexes.